Spectroscopic characterization of the electronic changes in the active site of Streptomyces antibioticus tyrosinase upon binding of transition state analogue inhibitors.
نویسندگان
چکیده
The dinuclear copper enzyme tyrosinase (Ty) from genetically engineered Streptomyces antibioticus has been investigated in its paramagnetic half-met form [Cu(I)-Cu(II)]. The cw EPR, pulsed EPR, and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments on the half-met-Ty and on its complexes with three different types of competitive inhibitor are reported. The first type includes p-nitrophenol, a very poor substrate for the monooxygenase activity of Ty. The second type comprises hydroxyquinones, such as kojic acid and l-mimosine, and the third type of inhibitor is represented by toluic acid. The electronic and structural differences of the half-met-Ty form induced at the cupric site by the different inhibitors have been determined. Probes of structural effects are the hyperfine coupling constants of the non coordinating Ndelta histidyl nitrogens. By using the available crystal structures of hemocyanin as a template in combination with the spectroscopic results, a structural model for the active site of half-met-Ty is obtained and a model for the binding modes of both mono- and diphenols could be proposed.
منابع مشابه
Inhibition Properties and Thermodynamic Changes of Binding of p-perazine-bis and p-peridine Dithiocarbamate Sodium Salts to Mushroom Tyrosinase
A mono- and a bi-functional dithiocarbamates as sodium salts were obtained by treating p-peridine or p-perazine in aceton-water mixture with CS2 in the presence of NaOH. These anionic water soluble compounds have been characterized by elemental analysis, IR and 1H NMR spectroscopic studies. Both compounds (p-peridine (I) and p-perazine-bis dithiocarbam...
متن کاملQuantum Mechanical Approach for the Catalytic Mechanism of Dinuclear Zinc Metallo-β-lactamase by Penicillin and Cephalexin: Kinetic and Thermodynamic Points of View
Metallo-β-lactamases (MβL) catalyzing the hydrolytic cleavage of the four-membered β-lactam ring in broad spectrum of antibiotics and therefore inactivating the drug; However, the mechanism of these enzymes is still not well understood. Electronic structure and electronic energy of metallo-β-lactamase active center, two inhibitors of this enzyme including penicillin and cephalexin, and differen...
متن کاملStructural basis and mechanism of the inhibition of the type-3 copper protein tyrosinase from Streptomyces antibioticus by halide ions.
The inhibition of the type-3 copper enzyme tyrosinase by halide ions was studied by kinetic and paramagnetic (1)H NMR methods. All halides are inhibitors in the conversion of l-3,4-dihydroxyphenylalanine (l-DOPA) with apparent inhibition constants that follow the order I(-) < F(-) << Cl(-) < Br(-) at pH 6.80. The results show that the inhibition arises from the interaction of halide with both t...
متن کاملCloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans.
In two separate studies a BclI-generated DNA fragment coding for the enzyme tyrosinase, responsible for melanin synthesis, was cloned from Streptomyces antibioticus DNA into two SLP1.2-based plasmid vectors (pIJ37 and pIJ41) to generate the hybrid plasmids, designated pIJ700 and pIJ701, using S. lividans 66 as the host. The fragment (1.55 kb) was subcloned into the multicopy plasmid pIJ350 (whi...
متن کاملA theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters
Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nucl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 9 شماره
صفحات -
تاریخ انتشار 2003